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Abstract
Answering questions in narratives about why
events happened often requires commonsense
knowledge external to the text. What aspects
of this knowledge are available in large lan-
guage models? What aspects can be made ac-
cessible via external commonsense resources?
We study these questions in the context of an-
swering questions in the TELLMEWHY dataset
using COMET as a source of relevant com-
monsense relations. We analyze the effects of
model size (T5 variants and GPT-3) along with
methods of injecting knowledge (COMET)
into these models. Results show that the
largest models, as expected, yield substantial
improvements over base models and injecting
external knowledge helps models of all sizes.
We also find that the format in which knowl-
edge is provided is critical, and that smaller
models benefit more from larger amounts of
knowledge. Finally, we develop an ontol-
ogy of knowledge types and analyze the rel-
ative coverage of the models across these cat-
egories.1

1 Introduction

Humans reason about events in narratives by mak-
ing inferences about why those events happen.
The recently introduced TELLMEWHY dataset tests
for this capability by posing why questions over
events in simple narratives (Lal et al., 2021). An-
swering these often requires commonsense knowl-
edge (CSK) that is not explicitly stated as part
of the narratives. Indeed, QA models built over
standard base sized models fare poorly, especially
where the answer is not stated in the narrative.

There are two broad avenues for incorporating
the necessary commonsense knowledge for this
task — using larger language models (e.g. T5-

11B (Raffel et al., 2020)) and leveraging exter-
nal knowledge resources. The former can be seen
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1We make the relevant code and data available at https:
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Figure 1: This paper systematically studies how to uti-
lize commonsense knowledge to answer why-questions
and their interaction with models M of different sizes.

as an implicit approach, where we tap knowledge
that is acquired via language modeling and gen-
eral QA task pretraining. The latter is an ex-
plicit approach where we inject knowledge from
a resource as part of the context. We start by
asking three questions that can inform future re-
search along these avenues: (1) What aspects of
commonsense knowledge are already accessible
to larger language models? (2) What aspects can
be made accessible by injecting information from
relevant knowledge sources? (3) What kinds of
knowledge remains inaccessible?

For the TELLMEWHY task, we explore the util-
ity of COMET2 (Bosselut et al., 2019; Hwang
et al., 2021) as a knowledge source. COMET is a
transformer-based model that generates common-
sense inferences about events that it has learned
from ATOMIC (Sap et al., 2019; Hwang et al.,
2021) and ConceptNet (Speer et al., 2017). How-
ever, the automatically generated knowledge may
contain incorrect or irrelevant inferences.

We start by exploring multiple ways of inte-
grating this kind of knowledge into a QA model.
First, we experiment with the best way of select-
ing relations from COMET that should be added
to model input. We find that adding diverse types

2We use COMET 2020 for our experiments.
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of relations helps the most. Next, we investigate
various ways to integrate this knowledge into a
model’s input. While COMET relations are usu-
ally words or phrases, converting them to sen-
tences using simple verbalization templates works
the best. Finally, we analyze the amount of exter-
nal knowledge needed by models of various sizes.
Smaller models benefit more from a larger amount
of knowledge while larger models do well with
less external knowledge.

These findings are used to build models of mul-
tiple sizes that can use external commonsense
knowledge for the TELLMEWHY task. We use
diverse types of information from COMET con-
verted into fluent sentences as part of the model
inputs. For small models, we supply more com-
monsense knowledge to boost model performance
while larger models are given less knowledge.

To analyze the relative merits of all these ap-
proaches, we manually categorized the Why ques-
tions according to the types of knowledge needed
to answer them. We find that most questions tar-
get Consequence, Goal seeking, Desire, and Re-
actionary knowledge types. We categorize the rest
as Other and analyze the performance of different
models across these knowledge categories. Our
analysis shows that models seem to particularly
lack the ability to understand and utilize ‘Goal
seeking’ knowledge.

In summary, our contributions are:

1. A systematic analysis of different aspects of
injecting commonsense knowledge for an-
swering why questions and their interaction
with models of different sizes

2. Developing an approach based on this analysis
to achieve a new state-of-the-art result on the
TELLMEWHY dataset, and an addition of human
judgments for answers to it

3. An analysis of types of knowledge that are not
adequately captured by current models.

2 Overview: Task and Models

This section gives an overview of the data and
evaluation scheme, and defines a formulation to
describe the model configurations we investigated.

2.1 Task
TELLMEWHY (Lal et al., 2021) is a dataset of 30k
questions and free-form answers concerning why
characters in short English narratives perform the
actions described. It is built on the ROCStories

corpus (Mostafazadeh et al., 2016). The ques-
tions are created by applying templates over events
described in the narratives, and the answers are
crowd-sourced from MTurk. Each question has 3
(possibly different) human answers. The dataset
contains both explicit-answer questions (EXPL;
there is a possible answer to the question in the
narrative) and implicit-answer questions (IMPL;
the answer is not in the narrative, so external
knowledge and/or reasoning is needed). Dataset
statistics are presented in Table 9, and an example
can be found in Table 11.

2.2 Model Setup

For this task, we investigate a variety of model
configurations that add commonsense knowledge
to the input. The inputs to a given model follow
the format:

question: Q [sep] context: C [sep] G(CSKn
Ω)

(1)
where Q represents the question and C denotes
the context, CSK stands for the external common-
sense knowledge being used, the function G indi-
cates the input format of this CSK, n represents
the number of CSK statements being used and Ω
stands for the way the relevant knowledge is se-
lected from all available knowledge.

For our experiments, we primarily use the T5
family of models (Raffel et al., 2020). T5 is a text-
to-text model, which means it can be trained on
arbitrary tasks involving textual input and output.
T5 has achieved SOTA on many natural language
understanding (NLU) tasks, including free-form
question answering. We use HuggingFace (Wolf
et al., 2020) for our models.
Small models We start with base-sized models,
which we refer to as small models. This class of
models is the most readily accessible and works
with smaller compute resources. Lal et al. (2021)
showed that small models struggle with answering
why questions about events in narratives. Prior
work (Bi et al., 2019; Xu et al., 2021b) has
shown that adding relevant knowledge from exter-
nal sources helps models answer contextual ques-
tions. For our investigation, we focus on T5-BASE,
which is a 220 million parameter model.
Large models It has been shown that, as the size
of the model increases, the ability of these models
to perform NLP tasks improves. With the increase
in the number of parameters, these models are bet-
ter endowed with certain types of knowledge due



Question: Why was Kelsi excited to try out bright red hair?
COMET: Kelsi was excited to try out bright red hair. [HASSUBEVENT ] [GEN ]

Kelsi was excited to try out bright red hair. [DESIREOF ] [GEN ]
...

Original Reranked Diverse

× get a wig (HASSUBEVENT) ✓ hair color (DESIREOF) ✓ to be fashionable (DESIRES)
✓ hair color (DESIREOF) ✓ to be fashionable (DESIRES) ✓ get red hair dye (HASSUBEVENT)
✓ to be fashionable (DESIRES) ✓ get red hair dye (HASSUBEVENT) ✓ hair dye (DESIREOF)
✓ get red hair dye (HASSUBEVENT) ✓ hair dye (DESIREOF) ✓ Kelsi’s hair is too dark (HINDEREDBY)
✓ hair dye (DESIREOF) × get a wig (HASSUBEVENT) ✓ gets complimented (OEFFECT)

Table 1: An example of how to extract (potentially noisy) COMET knowledge for a question in TELLMEWHY, and
two re-ranking approaches to reduce the noise in the generated knowledge. The top part shows how COMET is
prompted (its input, including GEN) with an event-centric relation type and the sentence from which the question
was created to generate the knowledge. Some resulting phrases are shown in the bottom half of the table according
to different ranking methods. These are verbalized according to templates in Table 10 before being fed into the
QA model.

to pretraining (Petroni et al., 2019). To investi-
gate the performance of large models, we use the
T5-11B model. This 11 billion parameter model
requires significant compute resources.
Very large models Brown et al. (2020) showed
that very large models have the ability to per-
form very well on a variety of natural language
understanding tasks even in zero- and few-shot
settings. Furthermore, PaLM (Chowdhery et al.,
2022) and LaMDA (Thoppilan et al., 2022) have
shown that these models can achieve compara-
ble performance to state-of-the-art finetuned mod-
els even when used in zero- and few-shot settings
(Wei et al., 2022). For our experiments, we use
the GPT-3 API by OpenAI to run zero-shot experi-
ments. GPT-3 has around 175 billion parameters.

2.3 External Knowledge

We use COMET (Hwang et al., 2021) as our
source of external commonsense knowledge to in-
tegrate pertinent information into the models. This
knowledge is represented through CSK in Equa-
tion 1. Such autogenerated knowledge may con-
tain incorrect or irrelevant inferences.

For the sentence in the narrative used to create
a question, we generate 3 relation phrases of dif-
ferent types from COMET. We focus on relation
types (see Table 10 for full list of relation types
used) about people (social interaction) and events
(event-centered). COMET also provided a score for
each generated relation.

When investigating the best approach to using
COMET, we need a ranking of the relations ac-
cording to their relevance to the associated story
and question. We calculate the BertScore (Zhang*

et al., 2020) between the output for each relation
and all gold answers for a question. The resulting
list of relations sorted by the described BertScore
value is considered to be the gold ranking. We
hypothesize that this is the kind of knowledge the
model needs to answer the question correctly.

2.4 Human Evaluation Metric

We use the human evaluation templates and
MTurk settings provided by Lal et al. (2021) to
collect judgments for models’ predicted answers
on the hidden test set. We asked the annotators
whether, given the story and its associated ques-
tion, the answer shown to them was valid. Each
answer is evaluated by 3 annotators on a 5-point
Likert scale (-2 to 2)3. We use the average Lik-
ert score over all answers as a performance met-
ric (Liddell and Kruschke, 2018). The maximum
score possible is 2, and the minimum is -2.

Running human evaluation is expensive and
time-consuming. Additionally, slight variants of
most large models tend to generate similar an-
swers (when using beam search) for many ques-
tions. In order to improve time and cost efficiency,
we implement a caching mechanism to re-use pre-
vious annotator judgments for the same answer for
a question in a particular story. We have built
a cache of ∼7000 model-generated answers with
human evaluations and make it available so that
human evaluation on this dataset is easier in the
future. More details are in Appendix A.

3Integer scores correspond to the labels: strongly dis-
agree, disagree, neutral, agree, strongly agree.



3 Empirical Insights into Knowledge
Integration

We instantiate the abstract model formulation de-
scribed in Equation 1 with various knowledge inte-
gration approaches. We ask three questions about
injecting external knowledge into models to im-
prove why question answering. Our findings influ-
ence the choices we make when building the best
possible model. We use the small and large mod-
els for our investigations in this section. Examples
of each variant are shown in Table 1.

3.1 What Knowledge to Inject?
For each question, COMET is used to retrieve a
list of possible commonsense relations across sev-
eral types. Each relational inference comes with
a score provided by COMET, but which of these
best aids answering the why-question is an open
question. This section investigates how to select
which to use (Ω in Equation 1). We thus hard-code
n = 3 and use (G = verbal.) to explore Ω. The
relations are verbalized according to the templates
presented in Table 10. More details about Gverbal

can be found in §3.2.
Intuitively, we want the external knowledge to

help produce human-like answers. To this end, we
calculate the BertScore of each COMET inference
to human answers and use this as a gold ranking
for the external knowledge we want to add.

• Ω = COMET (original) First, we use the
scores from COMET in descending order as
ranks for the relations. The QA model in-
put is augmented with the top n relations ac-
cording to these scores. Although using the
COMET ranking is the most straightforward
way to select relevant information, Table 2
shows that this approach performs poorly on
Precision@k metrics.

Ranking model P@3 P@5

COMET score 0.14 0.23
Pretrained MSMARCO 0.32 0.41
Finetuned MSMARCO 0.45 0.54

Table 2: Precision@k (P@k) scores to compare ap-
proaches to rank COMET. Our finetuned reranker sig-
nificantly outperforms the default COMET ranking.

• Ω = RERANKED-COMET (pre-trained MS-
MARCO) We start by using an off-the-shelf
pretrained ranking model: the msmarco-
distilbert-dot-v5 model available on Hug-

gingFace. The question and the narrative
concatenated with the "[SEP]" symbol is
treated as the query, and the associated rela-
tional inferences are treated as the documents
in this setting. We compute the cosine simi-
larity between the query and the inferences
to rank the latter. As shown in Table 2, this
significantly improves the P@k performance
over ranking just using COMET scores

• Ω = RERANKED-COMET (fine-tuned) We
finetuned the prior pretrained ranking model
to produce "silver" ranked relations as com-
pared to the gold ranking. We use sepa-
rate query and document encoders, each with
frozen embeddings. The word embeddings
are mean-pooled to obtained sentence-level
representations for both the questions and the
relations. We compute the cosine similarity
between the query and COMET inferences to
rank the latter. We use the pairwise ranking
loss function with the aim of optimizing Pre-
cision@5 for the ranking. To do this, we gen-
erate pairs using positive examples for ranks
1 to 4, and use the other relations to generate
negative examples. Table 2 shows that this
finetuned ranking model is clearly the best for
selecting COMET inferences to augment our
QA models. More details about the ranking
model are available in Appendix B. Going
forward, we use RERANKED-COMET to refer
to this model.

• Ω = DIVERSE-COMET Table 1 illustrates
that the top scoring inferences according to
COMET often involve the same relation types.
Relational inferences of the same type are
often semantically similar. We hypothesize
that models would benefit more from di-
verse knowledge rather than similar, redun-
dant knowledge. Therefore, we filter the list
of COMET inferences to retain only the top
inference for each relation, according to its
COMET score. Finally, we take the top scor-
ing relations from this filtered list.

Finding 1: Using ranked COMET inferences
helps. Table 3 shows the results for all possible
ways of using COMET inferences. We see that us-
ing external knowledge in any form, even rank-
ing by COMET scores, helps compared to mod-
els without added knowledge. Furthermore, using



T5-BASE T5-11B

Full Impl Full Impl

Original COMET 0.75 0.26 1.24 1.01

Diverse COMET 0.84 0.47 1.27 1.04

Reranked COMET 0.88 0.59 1.23 0.99

Table 3: What knowledge to inject? Both Diverse
COMET and Reranked COMET yield similar results.
We use Diverse COMET for the subsequent experi-
ments since it shows improvement on the large model.

the top inferences from the reranking model im-
proves over just using the top inferences according
to COMET. We see that selecting diverse relations
helps T5-11B the most; but using the reranking
model helps T5-BASE the most. However, the Di-
verse COMET and Reranked COMET models per-
form similarly across both model sizes.

3.2 How to Express the Knowledge to Inject?
Task-specific knowledge can be used in different
ways (Sahand Sabour, 2021; Xu et al., 2021a). We
investigate several ways of integrating the knowl-
edge from COMET (G(.) in Equation 1) into the
models for TELLMEWHY. We use n = 3 and
Ω = Diverse-COMET for these experiments.

• Gtup: This format uses special tokens
(<info> and </info>) for inferences and re-
lation types.

• Gtupsep: This format adds a "\n" token after
each inference and its relation type encapsu-
lated inside <info> tags. Each of these infer-
ences is additionally separated by "\n".

• Gverbal: Prior work (He et al., 2021; Arab-
shahi et al., 2021) has shown that it helps to
add external information in a fluent natural
language. Motivated by this, we verbalize the
inferences according to their relation type us-
ing the templates presented in Table 10.

See Fig. 5 for examples of these input formats.
Finding 2a: Relations as fluent sentences helps.
Table 4 shows that commonsense in any format
improves performance. Verbalizing COMET rela-
tions helps the most. Models are able to process
this extra information better when it is expressed
as fluent natural language sentences.
Finding 2b: Separator used is important. Prior
work (Khashabi et al., 2020) highlighted the im-
portance of separator tokens. In long texts such as

T5-BASE T5-11B

Full Impl Full Impl

Gtup 0.52 0.08 1.24 0.97

Gtupsep 0.52 0.1 1.11 0.81

Gverbal 0.84 0.47 1.27 1.04

Table 4: How to inject knowledge? The best way to
inject COMET inferences is to verbalize relational in-
formation as fluent sentences.

ours, it helps the model distinguish between dif-
ferent portions of the input. We found that a clear
separator token (sep = \n) informs the model
about the input segments and thus improves the
performance of both small (T5-BASE performance
improves from 0.36 to 0.58) and large models (T5-

11B improvement from 0.99 to 1.21). Results are
presented in Table 14.

T5-BASE T5-11B

Full Impl Full Impl

top1 0.88 0.51 1.24 0.95

top3 0.84 0.47 1.27 1.04

top5 0.91 0.56 1.25 1.05

Table 5: How much knowledge to inject? Smaller mod-
els need more external knowledge to achieve optimal
performance while larger models need less.

3.3 How much Knowledge to Inject?

We also investigate how the amount of knowledge
added (n in Eq. 1) affects the performance of the
model. We set Ω = Diverse-COMET and use
Gverbal.
Finding 3: Larger models need less knowledge.
Table 5 shows the effects of adding different num-
bers of relations. Adding 5 relations helps T5-BASE

the most, while T5-11B does best with 3 relations.

3.4 Injecting knowledge with GPT-3 prompts

To extend upon the insights of Finding 3, we
also experiment with a very large model (GPT-3),
which performs well on many NLP problems but
may still exhibit a lack commonsense (Bender and
Koller, 2020). With the right prompts, very large
models have been shown to work well even in a
zero-shot setting (Ouyang et al., 2022) because
they may already encode much of the information
needed to perform the task. We prompt GPT-3 with
the narrative context (N ), the question (Q) and



the knowledge (CSK) and the model autoregres-
sively generates a sequence. Our use of knowledge
in the prompt is a form of “prompt engineering”,
where GPT-3’s behavior is modified by enhancing
the prompt (Le Scao and Rush, 2021). We enhance
the input by simply injecting commonsense that
nudges the model towards the correct answer. See
Table 12 for examples of different prompts.

Unlike finetuning, in a zero-shot setting, the
model has no opportunity to learn when and how
to apply CSK. Therefore, it is imperative to inject
CSK into the prompt in the best possible manner.
We experimented with providing CSK before N
(prefix), after N (postfix), and finally by inserting
CSK after the sentence from which Q was cre-
ated (infix). Infix injection works best because it
allows the model to encode the sentence of interest
with a richer context. Postfix injection forces the
autoregressive model to pay more attention to po-
tentially noisy CSK, and prefix injection leads to
the knowledge being often ignored perhaps due to
the distance from the question. Thus, we chose in-
fix injection as the preferred prompting approach.

4 Distilling the Empirical Insights: The
KNOWWHY Approach

Finally, we combine our findings to create the
KNOWWHY approach. We use it to build the best
possible models of all sizes — small, large and
very large — for the TELLMEWHY task. From Find-
ings 1-2, we use sep = \n, Gverbal and Ω =
Diverse-COMET. From Finding 3, we use n = 5
for the small models, n = 3 for large models, and
n = 1 for very large models.
Injecting knowledge helps. For each scale of
model under investigation, we compare versions
with and without external knowledge. Table 6
shows the overall human evaluation numbers on
the hidden test set of the TELLMEWHY dataset as
calculated according to §2.4.

Injecting external knowledge helps the small
models the most. While overall performance im-
proves, the biggest improvement is on implicit
questions, where the answer is not available in the
narrative. This shows that such external knowl-
edge can significantly fill gaps in small models.

Additonally, we find that external knowledge
improves the performance of very large models
(GPT-3) more than it does for large models (T5-

11B). This can be due to various reasons. First,
GPT-3 is used in a zero-shot setting while the oth-

Size Setting Avg Likert Binary Accuracy

Full Impl Full Impl

Small w/o knowl 0.58 0.02 0.61 0.42
w/ knowl 0.91 0.56 0.73 0.61

Large w/o knowl 1.21 0.97 0.84 0.75
w/ knowl 1.27 1.04 0.85 0.77

V. large w/o knowl 1.17 1.1 0.83 0.8
w/ knowl 1.32 1.24 0.87 0.85

Humans 1.35 1.28 0.99 0.97

Table 6: KNOWWHY approach on TELLMEWHY dataset
achieves a new SOTA. Judiciously adding knowledge
helps across model sizes.

ers are finetuned. Second, it is possible that very
large models have a greater capacity to use exter-
nal information.
Scale matters. Table 6 indicates that just in-
creasing the scale of the model results in a large
performance boost (5x higher than the previous
SOTA Lal et al. (2021), which achieves 0.36 on
Full and -0.27 on IMPL on the Avg Likert metric
§2.4). Judiciously adding knowledge helps across
all model sizes. Large models outperform small
models, even when small models are augmented
with external knowledge. Interestingly, adding ex-
ternal, relevant commonsense knowledge still sig-
nificantly helps large and very large models cor-
rectly answer questions. T5-11B and GPT-3 aug-
mented with knowledge achieve the best perfor-
mance on this dataset and come very close to hu-
man performance on the Avg Likert metric.

4.1 Have models actually reached human
performance?

To investigate this, we compare scores for humans
and models on the spectrum of the Likert scale.

Likert T5-BASE T5-11B GPT-3 Human

-2 0.05 0.01 0.01 0
-1 0.09 0.05 0.02 0.01
0 0.11 0.08 0.08 0
1 0.34 0.36 0.37 0.55
2 0.41 0.5 0.52 0.44

Table 7: Comparison of models by percentage of scores
of different Likert values for their answers. Larger
models get a higher percentage of strong agreement
(Likert=2) scores than humans. Humans maintain near-
perfect consistency of correct answers (Likert>0).

Table 7 suggests that (very) large models are
unable to maintain peak performance consistently.



Figure 2: Binary accuracy of models by question type for IMPL. The checkered pattern indicates that there is a
drop in performance when external knowledge is added. 1. T5-BASE benefits most from consequence knowledge.
2. GPT-3 and T5-11B get largest gains from Goal-seeking knowledge. 3. The only case where knowledge hurts is
for T5-11B with Reactionary type. 4. Other knowledge categories don’t help T5-11B and GPT-3.

For a Likert score of +2, they outperform humans:
0.44 vs. 0.52 for GPT-3. Figure 3 shows an exam-
ple where the model answer is judged by humans
to be better than a human answer. However, unlike
humans, this performance is inconsistent. Models
generate more answers given scores 0, -1, and -2.
Figure 3 also shows an example where the model
generates a terrible answer that is rated -2, a score
that no human answer is ever given. This is in line
with Bender and Koller (2020): large models are
on topic, but can be unclear or fail to make sense.

To make the comparison with human perfor-
mance clearer, similar to (Lal et al., 2021), we
collapse the 5-point average Likert into a binary
measure of accuracy (only scores of 1 and 2 are
counted as correct). On this binary accuracy met-
ric, as shown in Table 6, humans are almost per-
fect, with an accuracy of 99%. However, the
best model (GPT-3 with knowledge) only achieves
87%, indicating that there is still significant room
for improvement on this task.

5 Analysis

To better understand the strengths and weaknesses
of these models, we defined an ontology for the
types of knowledge that are required to answer
TellMeWhy questions. We identified five cate-

Matt and Sarah were pregnant. They wanted to announce
it in a fun way. They wrote it on a cake. The, they invited
their friends over. When their friends saw the cake, they
were excited.
Question: Why were Matt and Sarah pregnant?
Human Answer: The two had previously been intimate

together.
Model Answer: Matt and Sarah were pregnant because

they wanted to have a baby.

Maggie was drinking some green juice. She left the cup
out awhile. When she went to get another sip it tasted odd.
She realized that it had separated weirdly. She threw the
juice out.
Question: Why did she leave the cup?
Human Answer: There was something else Maggie had

to attend to for a bit.
Model Answer: Maggie left the cup because it was too

heavy.

Figure 3: Examples of cases where the model comes
up with really good (upper box) and really bad (lower
box) answers. In the upper box, when augmented with
knowledge, GPT-3 generates an answer that achieves
a +2 Likert score, while the human gold answer itself
only got a +1. In the lower box, GPT-3’s answer gets a
Likert score of -2 while the human gold answer is +1.

gories of questions, and then labeled the CaTeRs
subset of TellMeWhy, for which the gold answers
already have human evaluation judgments.



5.1 Question distribution in IMPL subset
The categories are:

• Consequence (30.2%): an event happened
as a consequence of another event.

• Goal-seeking (29.1%): an agent performed
an action as an intermediate step to a goal.

• Reactionary (25.4%): an agent performed
an action as a reaction to another event.

• Desire (8.8%): an agent performed an action
to accomplish an inherent goal.

• Other (6.5%): types of knowledge that do
not fall into the categories above.

Examples of each type can be found in Figure 6.
Since implicit answer questions (IMPL) require

knowledge outside the text, we analyze them to
study the gaps in the models’ understanding and
identify possible areas for improvement. Fig-
ure 2 presents binary accuracy of all models across
question types.

To quantify the differences across models, we
compute a failure probability for each category,
i.e., the probability of an incorrectly answered
question (Avg 5pt Likert score of the model an-
swer to the question < 1) belonging to a given cat-
egory. We compute this by dividing the number of
incorrectly answered questions of that knowledge
type by the total number of wrong answers. We
measure the differences in these failure probability
distributions across models using Jensen-Shannon
Divergence (JSD).

5.2 Reasoning that Models Lack
Figure 2 shows that small models are unable to
reason adequately about all knowledge types, and
adding external knowledge boosts performance
across the board, particularly for ‘Consequence’
questions. As the model size increases, it’s un-
derstanding of each type also increases. However,
without knowledge, there is a huge gap in the per-
formance of even the largest models when com-
pared to humans across all categories, showing
that understanding all of the aspects of an event
needed to answer why questions is hard.

The JSD of the failure probability distributions
for T5-BASE and T5-11B across categories is only
0.13 and T5-11B and GPT-3 is 0.14. This suggests
only a small difference in the knowledge types
these models fail to capture.

Matt and Sarah were pregnant. They wanted to announce
it in a fun way. They wrote it on a cake. The, they invited
their friends over. When their friends saw the cake, they
were excited.
Question: Why did they write it?
Model Answer (no CSK): They wrote it on a cake.
Human Answer: Matt and Sarah wanted to surprise their

friends with something unexpected.
Model Answer (w/ CSK): To let their friends know that

they were expecting a baby.

Figure 4: An example where knowledge helps GPT-
3. The model answer without CSK achieved a Likert
score of 0, the human answer had a Likert score of +1,
and the model answer with CSK scored +2.

5.3 Where Knowledge Helps

Figure 2 shows how adding knowledge helps
for questions of different categories. Exter-
nal knowledge consistently helps models of all
sizes, except that it hurts significantly for ‘Reac-
tionary’ questions. For ‘Consequence’ questions,
adding CSK pushes T5-BASE (a 110M parameter
model) to close to T5-11B (11B parameter model)
even though the latter is finetuned without CSK.
Adding CSK improves GPT-3 the most on ‘Goal-
seeking’ questions. Figure 4 shows an example
where knowledge helps.

6 Related Work

6.1 Knowledge Bases

Knowledge bases (KBs) are a reliable source of
world facts and relationships between common
concepts. They can be constructed through semi-
automated extraction over text (Speer et al., 2017;
Tandon et al., 2017) or through crowdsourcing
(Sap et al., 2019).

Petroni et al. (2019) show that, instead of these
approaches, pretraining language models on text
already endows them with certain types of factual
knowledge that helps them do well on QA tasks.
More recently, a popular approach is to fine-tune
a language model on existing KBs, to general-
ize their knowledge and pay attention to the con-
text, e.g., COMET (Bosselut et al., 2019; Hwang
et al., 2021) generates context-relevant common-
sense knowledge. It is a fine-tuned language
model over ATOMIC and ConceptNet KBs. Sim-
ilarly, ParaCOMET (Gabriel et al., 2021) is a lan-
guage model fine-tuned for discourse knowledge
by fine-tuning over ROCStories, thus it generates
relations consistent with an input narrative.



6.2 Incorporating External Knowledge

Model outputs have been improved through com-
monsense injection using regularization at training
time (Guan et al., 2020) or simply by appending to
the input (Lewis et al., 2020; Talmor et al., 2020).

There are two key challenges in using external
sources. The first is figuring out what knowledge
to use and the second is determining how to effec-
tively integrate it into the end task.

Some recent research injects triples into sen-
tences in order to create domain-specific knowl-
edge (Liu et al., 2020; Wang et al., 2020). Huang
et al. (2019) incorporate commonsense knowledge
directly into training data. Feng et al. (2020) lever-
age relations from ConceptNet using structured re-
lational attention to perform multi-hop QA. How-
ever, there is still uncertainty on the proper way
to use external knowledge to solve commonsense
reasoning problems (Zhang et al., 2020).

ERNIE (Zhang et al., 2019) is an enhanced lan-
guage representation model trained using large-
scale corpora and knowledge graphs that shows
significant improvements on various knowledge-
driven tasks. Xiong et al. (2020) propose a weakly
supervised pretraining objective, which explicitly
forces the model to incorporate knowledge about
real-world entities to perform entity-related QA
tasks. KGLM (Logan et al., 2019) is a neural lan-
guage model with mechanisms for selecting and
copying facts from a knowledge graph that are rel-
evant to the context.

KagNet (Lin et al., 2019) grounds a QA pair
in CommonsenseQA (Talmor et al., 2019) from
the semantic space to the knowledge-based sym-
bolic space as a schema graph, uses a KG-aware
module to focus on it, and scores answers with
graph representations. Lv et al. (2020) propose
a graph-based contextual representation learning
and inference module to better use graph in-
formation for commonsense QA. Shwartz et al.
(2020) generate and integrate background knowl-
edge from pretrained LMs to develop an unsu-
pervised framework for multiple-choice common-
sense tasks. Generated knowledge prompting elic-
its and integrates knowledge from language mod-
els using task-specific, human-written, few-shot
demonstrations so as to improve performance on
commonsense reasoning tasks (Liu et al., 2021).

7 Conclusion

Answering why questions requires several forms
of commonsense knowledge. This paper inves-
tigates different aspects of incorporating external
knowledge to improve this process. We discover
several empirical insights on how to incorporate
external knowledge. By incorporating these in-
sights, our approach, KNOWWHY, successfully uses
external knowledge to help models of all sizes
(small, large, and very large) answer why ques-
tions better; but they still fall short of human per-
formance. Questions that involve implicit infer-
ences are harder for all the models, and require
modeling innovations. Our investigation opens up
interesting questions, such as learning when and
how to add external knowledge, in order to further
close the gap with humans.

8 Limitations

Reproducing our experiments for T5-11B requires
extensive compute resources, including TPUs,
while running zero-shot experiments with GPT-3

requires access to the paid OpenAI API.
Few-shot prompting and in-context learning are

also popular ways of using models like GPT-3 for
various tasks. We leave the exploration of such
methods for TELLMEWHY for future work.

Our investigation into adding external common-
sense to help NLP models perform better is lim-
ited to just one dataset that focuses on why ques-
tion answering. Indeed, such knowledge is also re-
quired to enhance other reasoning capabilities of a
model. It would be interesting to see how our find-
ings would transfer to other tasks.

COMET as a source of knowledge is limited in
the quality and relevance of information it can
provide. Studying other sources of commonsense
knowledge would be another productive area for
future work.

Finally, human evaluation of free-form model
answers is expensive and time-consuming. Even
though our current answer cache is fairly sizeable,
there is non-trivial time and expense involved in
following the evaluation suggested by Lal et al.
(2021).
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Figure 5: Example inputs and target outputs for differ-
ent models of the T5 family. Q represents the question,
C denotes the context and A denotes the answer. Pi de-
notes a relation from COMET, Ri denotes its type and
V P i denotes its verbalized form according to Table 10.
Here i = 1, 2, 3.

A Caching for Human Evaluation

In order to improve time and cost efficiency, we
implement a caching mechanism to re-use previ-
ous annotator judgments for the same answer for a
question in a particular story. For this purpose, we
save all the human judgments for a (question, an-
swer, story) triple. For all model predictions, we
first check if a (question, answer, story) triple4 is
already present in the cache. If it is, we use the
old judgments for it. If not, we gather validity an-
notations for it using human evaluation and add
them to the cache for future use. We have built up
a cache of ∼7000 model-generated answers and
will release it so that it becomes easier to perform
human evaluation on this dataset in the future.

B Building the Ranking Model

Configuration P@3 P@5 P@10

Q: narrative + ques 0.32 0.41 0.57
D: relation phrase

Q: ques 0.25 0.34 0.50
D: relation phrase

Table 8: Pretrained msmarco-distilbert-dot-v5 model
ranking precision scores for different query (Q) and
document (D) configurations

Here, we provide details into our experiments
with finetuning the pretrained msmarco-distilbert-

4All text is lowercased and answer is also stripped of
punctuation.

dot-v5 model to rank the COMET relations associ-
ated with a context and question.

We experimented with different formulations of
queries and documents. Table 8 shows the ranking
precision scores of the pretrained model for dif-
ferent configurations. We select the first one for
finetuning as it has a higher P@k suggesting that
adding the context after a question is most helpful.

We used Adam optimizer with a learning rate of
1e-05 and weight decay of 1e-04. The batch size
was 1 and we used Precision@5 scores to select
the best finetuned model.

C Hyperparameters

C.1 T5-BASE

For T5-BASE, we train the model with batch size
16, learning rate 5e-5 and maximum answer length
30. We vary the source length from 75 to 450 ac-
cording to the amount of external knowledge be-
ing injected into the input context. The model is
trained until the dev loss fails to improve for 3 it-
erations. Training usually takes 7-8 hr on 1 Titan
Xp GPU.

C.2 T5-11B

For training the T5-BASE model, we followed a de-
fault set of hyperparameters that are recommended
in (Raffel et al., 2020).5

T5-BASE model has 110M parameters with
24-layers, 1024-hidden-state, 4096 feed-forward
hidden-state, and 16 attention heads. T5-11B

model has 11B parameters with 24-layers, 1024-
hidden-state, 65,536 feed-forward hidden-state,
128 attention heads. We use TPU (v3-8) on google
cloud platform. It takes 6 hours in average to train
the model.

C.3 GPT-3

We used a temperature of 0.0 for all the experi-
ments to select the most likely token at each step,
as this setting allow for reproducibility6.
import os
import openai

openai.api_key = os.getenv("OPENAI_API_KEY")

5https://github.com/google-research/
text-to-text-transfer-transformer

6We note that some researchers have shown
that even this setting might not make it com-
pletely reproducible: https://twitter.com/
ofirpress/status/1542610741668093952?s=46&t=
f9v5k9RzVKnTK1e0UyauOA

https://github.com/google-research/text-to-text-transfer-transformer
https://github.com/google-research/text-to-text-transfer-transformer
https://twitter.com/ofirpress/status/1542610741668093952?s=46&t=f9v5k9RzVKnTK1e0UyauOA
https://twitter.com/ofirpress/status/1542610741668093952?s=46&t=f9v5k9RzVKnTK1e0UyauOA
https://twitter.com/ofirpress/status/1542610741668093952?s=46&t=f9v5k9RzVKnTK1e0UyauOA


response = openai.Completion.create(
engine="text-davinci-002",
prompt=prompt,

temperature=0.0, # for reproducibility.
max_tokens=40,
top_p=1,
frequency_penalty=0.1,
presence_penalty=0

)

The frequency penalty penalizes new tokens
based on existing frequency in text so far, while
the presence penalty sets the model’s likelihood to
talk about novel topics.

Split # stories # questions

Train 7558 23964
Dev 944 2992
Test 944 3099

Hidden Test 190 464

Total 9,636 30,519

Table 9: TELLMEWHY Dataset Statistics

Relation Type Verbalization

Causes causes
CausesDesires makes someone want

DesireOf is a desire of
Desires desires

HasFirstSubevent begins with
HasLastSubevent ends with
HasPrerequisite to do this, one requires

HasSubevent includes
HinderedBy can be hindered by

MotivatedByGoal is a step towards accomplishing
oEffect as a result, they will
oReact as a result, they feel
oWant as a result, they want
xEffect as a result, she will
xIntent because she wanted
xNeed but before, she needed
xReact as a result, she feels

xReason because
xWant as a result, she wants

Table 10: Fluent natural language templates used to
verbalize each relation according to its type. To pre-
pare the external knowledge for Gverbal , the sentence
best-aligned to the question precedes the verbalization
and the relation succeeds it.

D Automatic Metrics

Table 13 shows the values for various automatic
metrics for different models we built. We adapt
the evaluation script released by Lal et al. (2021)
to obtain these numbers.

Story: Sandra got a job at the zoo. She loved
coming to work and seeing all of the animals.
Sandra went to look at the polar bears during her
lunch break. She watched them eat fish and jump
in and out of the water. She took pictures and
shared them with her friends.
Question: Why did Sandra go to look at the po-
lar bears during her lunch break?
Ans: she wanted to take some pictures of them.

Story: Cam ordered a pizza and took it home.
He opened the box to take out a slice. Cam dis-
covered that the store did not cut the pizza for
him. He looked for his pizza cutter but did not
find it. He had to use his chef knife to cut a slice.
Question: Why did Cam order a pizza?
Ans: Cam was hungry.

Table 11: Examples from the TELLMEWHY dataset.
The first is answerable directly from text in the
story, but the second requires external knowledge.
We only show one out of three available answers
here. TELLMEWHY was released by its authors at
https://stonybrooknlp.github.io/tellmewhy/



Figure 6: Examples of questions associated with each knowledge type in the ontology.

Narrative (N): Rudy was convinced that bottled waters all tasted the same. He went
to the store and bought several popular brands. He went back home and set
them all on a table. He spent several hours tasting them one by one. He came
to the conclusion that they actually did taste different.
Question (Q): Why did He go back home?

No knowledge Prompt S1 S2 S3 Q The correct reason is:
Answer Rudy went back home to compare the different brands of water side by side.

Prefix Prompt Note: CSK S1 S2 S3 Q The correct reason is:
Answer to taste them one by one

Postfix Prompt S1 S2 S3 Note: CSK Q The correct reason is:
Answer He went back home to taste the waters.

Infix Prompt S1 S2 CSK S3 Q The correct reason is:
Answer He went back home to test the waters.

Table 12: This table the different types of prompt formats we tried for GPT-3, using an example. Each narrative
can be represented as a sequence of sentences S1, S2, S3. The external knowledge is denoted as CSK.

Size Setting BertScore ROUGE-L F1 BLEU BLEURT

Full Impl Full Impl Full Impl Full Impl

Small w/o knowl 0.45 0.38 0.24 0.17 20.49 14.61 -0.36 -0.59
w/ knowl 0.45 0.36 0.23 0.18 19.85 13.7 -0.38 -0.62

Large w/o knowl 0.42 0.35 0.22 0.17 17.3 12.6 -0.22 -0.42
w/ knowl 0.43 0.35 0.23 0.18 17.1 12.4 -0.22 -0.44

Very large w/o knowl 0.28 0.26 0.15 0.14 8.63 7.66 -0.78 -0.83
w/ knowl 0.39 0.36 0.24 0.21 17.32 15.24 -0.50 -0.50

Table 13: Scores of various models using automatic metrics for the free-form, open-ended TellMeWhy answer
generation task. We use the same logic followed by Lal et al. (2021). The trends for none of these metrics match
any trends observed in Table 6.



Full Impl

Small (T5-BASE)
w/o sep. 0.36 -0.27
w/ sep. 0.58 0.02

Large (T5-11B)
w/o sep. 0.99 0.6
w/ sep. 1.21 0.97

Table 14: Performance of both small and large mod-
els on Avg Likert score improves significantly when
adding a clear separator token (sep = \n) to the origi-
nal T5 format specified in Raffel et al. (2020) Appendix
D.3.


